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1. Goals
1.1 Motivation

In the early days of the Internet, devices were able to directly communicate end-to-end with
each other in an environment where cyber-security threats were uncommon. Much has since
changed, and today the Internet presents an environment where security and privacy concerns
are at the forefront, and where end-to-end connectivity among end users has been hindered by
user mobility, IPv4 address space shortage and the widespread use of Network Address
Translators (NAT) and firewalls.

Nonetheless, with the advent of cloud computing and online social networking (OSN), Internet

users and applications increasingly require the ability to communicate end-to-end among peers
with privacy and integrity (e.g. among personal mobile devices, or among cloud virtual machine
instances deployed over multiple providers). Centralized services that mediate end-to-end user
communication raise major concerns in privacy, fault-tolerance, and performance and are thus
inadequate for many envisioned usage scenarios, for reasons including:

1) Potential Privacy Loss/Leakage- Centralized services such as online social networks
(OSNs) allow users to communicate with their peers; because user-to-user
communication goes through a centralized backend (e.g. Facebook), the service
provider can view and store all interactions (e.g. wall posts, messages, photos, etc)
conducted among social peers. A provider’s privacy policy may change over time; thus
many users worry about data that they would like to be restricted to a group of people
(e.g. their friends) potentially being disclosed to others. In addition to OSN providers,
centralized virtual private network (VPN) providers can also intercept and observe
IP-level communications between peers. In contrast, IPOP follows an approach where
peers communicate privately, end-to-end, effectively thwarting monitoring attempts by a
centralized entity.

2) Performance Limited by Service Providers- In addition to privacy concerns, centralized
services often constrain interactions between peers in order to scale to large numbers of
users through the interfaces (APIs) exposed - for instance, by imposing limits in
bandwidth, file sizes, and the types of interactions (e.g. only certain file types/sizes may
be allowed). In contrast, IPOP follows an approach where peers are not constrained by
any provider APIs or limits in their communication - the API that is exposed by IPOP is
the standard IP network protocol, hence supporting applications that work over IP
networks.

3) Fault tolerance - Centralized services can become unavailable to users due to outages,
cyber-attacks, and government censorship, preventing user-to-user communication -
even if there may be an Internet path between them. In contrast, IPOP supports direct
peer-to-peer communication when there is an Internet path between the users.



In this context, IPOP has been designed to address the following requirements:

1) User-defined and User-friendly Virtual Network Links - Users must be able to define
which devices to link to, using simple-to-use interfaces and leveraging well-adopted
standards. IPOP allows users to establish relationships between devices they wish to
connect using user-friendly social networking interfaces, through an OSN provider of
their choice, or their own private service.

2) Self-configuring Virtual Network Links - Private links must be configured without
exposing users/administrators to the challenges of configuring/exchanging security
credentials, and managing endpoint IP addresses that may be private and change
dynamically due to mobility and NATSs.

3) No Dependence on External Virtual Routing Infrastructure - The virtual network must be
able to encapsulate, tunnel, encrypt, and route packets at the endpoints themselves,
without relying on the deployment of managed virtual routing infrastructure on the
Internet.

1.2 Objectives

The vision for the IPOP project is to provide an open-source platform for user-centric
Software-Defined Network (SDN), allowing end users to define and create their own VPNs
connecting their own resources over the Internet.

The IPOP (IP-over-P2P) system creates an overlay virtual network supporting the vision that
future Internet applications will increasingly demand direct, secure end-to-end P2P
communication among devices. IPOP creates P2P links among endpoints, which can be mobile
and/or NATed; provides virtual private IP messaging tunneled through P2P links as a core
service; and enables the creation of peer-to-peer virtual private networks (P2P VPNSs) of various
topologies. IPOP also supports tunneling of Layer-2 Ethernet frames, in its recently introduced
“switch mode” operation. Thus, IPOP can be configured to work as either a Layer-2 or Layer-3
overlay virtual network.

A key objective is to deliver the benefits of privacy, authentication and integrity in end-to-end
communications to a wide range of users - including individuals, users/administrators
aggregating resources across cloud infrastructures, and researchers studying next-generation
cloud middleware. To accomplish this objective, IPOP requires no networking infrastructure
deployment beyond endpoint resources, leverages user-friendly interfaces for configuration, and
uses virtualization, supporting standard Internet protocols and existing applications.

Another objective of the project is to be community-driven and encourage contributions from
developers. We use the liberal MIT license; the software development process follows



open-source best practices, and the system has been designed in a modular fashion and
incorporates standards and third-party OSS implementations to the extent possible, and is
designed to run on a variety of platforms, including embedded systems, mobile devices,
personal computers, and cloud servers.

The resulting system is an overlay where every participating device has links to “social peers”
(e.g. devices owned by friends in an online social network, or cloud-hosted computers that join a
virtual cluster) and virtualization enables peers to communicate using IPv4/IPv6 standards, thus
supporting existing, unmodified applications and allowing new applications to be developed
using well-understood, widely-adopted Berkeley sockets interface. IPOP accomplishes this by
implementing the core functionality of tunneling IP packets (or Ethernet frames, in switch-mode)
over peer-to-peer “TinCan” links and exposing a flexible API to control the setup and
management of TinCan links to create various software-defined VPN overlays.

To address the requirements listed above, IPOP provides the following functionalities:

1) IPOP allows users to define relationships through easy-to-use OSN interfaces. These
relationships can be among individual users, as well as group-oriented, supporting use
cases including user-facing devices and friend-to-friend communication, as well as cloud
servers connected as logical groups to form virtual clusters. They can be inherited from
existing OSNs, or established in private/custom OSNs, and managed dynamically.

2) IPOP automatically maps OSN relationships to configure and manage virtual network
links. This includes the generation and exchange of security credentials, setup of
peer-to-peer links, virtual IP addresses, and overlay routing across multiple links.

3) IPOP allows each endpoint device to not only pick and inject packets, but also provides
a framework for overlay routing across multiple links. To bootstrap itself, IPOP leverages
external infrastructure/services to set up links - using standard protocols for
messaging/notification (XMPP) and assistance in NAT traversal (STUN, TURN). Once
links are established, IP-over-P2P messaging does not depend on the external
infrastructure - it is done in a peer-to-peer fashion.

1.3 Use cases

There are several use cases for which IPOP provides useful features, as illustrated in the
following examples. These examples highlight scenarios that use two of the IPOP “controllers”
that have been developed thus far - SocialVPN and GroupVPN. The functionality of these
IPOP controllers is described in detail later in the white paper, but it is important to introduce
their main characteristics at this point: in SocialVPN, each individual user, on his or her own, is
able to determine which other individual users they wish to connect to by a VPN. In GroupVPN,
instead of individual user-to-user relationships, a group relationship is established: each user in
the group is able to communicate to all other users in the group, without having created a
friendship link to other users. For instance, let us consider Facebook as a representative OSN
to highlight differences between these two use cases. In SocialVPN, an individual user would
only communicate with the Facebook friends they have explicitly accepted to join their social



network. In GroupVPN, instead, a user with the role of group leader would create a Facebook
group and invite users to join; any user who joins the group would automatically be able to
communicate with all other users who also joined the group - even though they may not be
Facebook friends to each other. In essence, in GroupVPN, users delegate the establishment of
trust to the group leader, whereas in SocialVPN, each user is in control of who they trust.

1) Distributed virtual clusters

Cloud users are becoming increasingly wary of vendor lock-in and expect the ability to
painlessly move their workloads across cloud providers. Several projects are designed with
multi-cloud deployment as a fundamental tenet. A motivation for IPOP is to facilitate such
cross-cloud mobility by providing a virtual networking technology that requires little configuration
and infrastructure.

For example, Alice runs a multi-tier web service consisting of a front-end server, application
servers, and a database on a single cloud provider. For enhanced network security, Alice only
assigns a public IP address to the front-facing web server and runs the application servers and
database in a NAT-ted virtual network in the cloud. Alice then decides to move some of the
application servers to a different cloud provider and restricts their Internet exposure with a
similar NAT-ted network environment. Without IPOP, Alice needs to update all of the
configuration files pointing to the application servers and is required to create port

forwarding rules on the NATSs at each cloud provider. She also has to ensure that all traffic
between the front-end server and the application servers is encrypted because the VMs would
be communicating over the open Internet.

Alice could potentially also use emerging SDN or overlay networking techniques to enable this
cross-cloud migration; however, such solutions require networking expertise along with
additional resources such as virtual switches/routers.

Instead, IPOP’s GroupVPN can be used as the networking fabric to create virtual machine
clusters deployed across multiple cloud providers (private and commercial) - without requiring
any special support from the cloud providers, only the ability to run VMs. This allows software
that runs on clusters (e.g. job schedulers, multi-tier Web frameworks) to seamlessly run across
cloud providers, enabling greater flexibility in the management of workloads and costs by
reducing concerns about vendor lock-in.

By running IPOP’s GroupVPN in her virtual machines, Alice is able to maintain their private IP
addresses because TinCan links are automatically re-created upon migration, even if the VM is
behind a different NAT. IPOP node identifiers are preserved, and virtual IP addresses are
decoupled from the physical infrastructure IP addresses.

IPOP’s “switchmode” allows it to work as a layer-2 virtual network, processing Ethernet frames
and handling broadcast requests. This is important in deployments that use protocols other than
IP-based, and also enables applications to bypass the IPOP overhead on LAN communications.



2) Mobile computing and social network overlays

In the case of mobile computing, it is typically the case that a mobile user needs to
communicate with trusted nodes to share either personal information (e.g. check-in at a
restaurant), media (e.g. photos or videos), or computation (e.g. volunteer computing for mobile).
For instance, many smartphones run a media server which facilitates media sharing with other
devices in the same LAN.

IPOP’s SocialVPN creates a virtual LAN which makes it possible to extend this media sharing
capability with social peers regardless of their location. As another example, through the VPN,
users can make direct mobile SIP-based calls over the Internet using mobile softphone apps

such as CSipSimple, thus enabling encrypted calls that are not logged by a centralized server.

With IPOP’s SocialVPN, trusted peers are mapped to a virtual private IP address which is
preserved as the mobile devices move across different networks (e.g from/to WiFi to 3G/4G).
IPOP also supports IP multicast on within the virtual network; therefore LAN network discovery
protocols such as UPnP and MDNS work out of the box.

IPOP’s SocialVPN can be used as the communications layer to enable users to collaborate,
share directly with friends over private end-to-end network links. This allows social peers to
bypass the need to communicate through an online social network provider for privacy-sensitive
or low-latency/high-bandwidth applications, while still benefitting from the ability to discover and
establish friendships through an OSN provider.

2. Background

2.1 Software-Defined Network (SDN)

Recent developments in software-defined networking (SDN) have enabled unprecedented
flexibility in the provisioning of elastic cloud services by data center providers. In SDN-enabled
technologies, a user (typically a network administrator) is given the ability to program the
behavior of network fabric (typically switches and routers) through a standard, programmatic
interface (e.g. OpenFlow).

Yet, several use case scenarios require users to deploy virtual networks that span across
multiple cloud providers, mobile device endpoints, and are subject to device mobility and VM
migration. In these scenarios, prevailing SDN techniques are challenging to deploy, because no
single entity has the capability to program SDN devices end-to-end - for instance, mobile
Internet users Alice, Bob and Carol may wish to create a software-defined network connecting
their devices together but do not have the authority to configure any networking equipment other
than their own devices.



The techniques currently available for typical “data center SDN” technologies do not apply in a
straightforward way when the endpoints are personal devices managed by multiple end users
and connected by the public Internet. In contrast, IPOP enables setup and management of
private end-to-end tunnel links allowing virtual networks over shared infrastructure. It reuses
existing standards and implementations of services for discovery and notification (XMPP),
reflection (STUN) and relaying (TURN), facilitating configuration with an approach where trust
relationships maintained by centralized (or federated) services are automatically mapped to
end-to-end overlay links.

2.2 Overlay Virtual Networks in Cloud Computing

Over the past few years, major laaS cloud providers have introduced network virtualization
capabilities allowing users to create their own isolated virtual network and define IP address
ranges and subnets on the cloud.

laaS vendors, such as Amazon EC2,Windows Azure, and Google Cloud Engine, also enable
additional features such as specifying DHCP and DNS setting for the private network. Moreover,
users can define routing rules and network access control for the network and IPSec VPN
gateways which make it possible to combine multiple different subnets from private or public
clouds.

It is clear that the cloud computing industry understands that network virtualization is a crucial
component for cloud provisioning; however, there is no open standard for interoperability, thus
placing the entire burden on users desiring cross-cloud deployments.

To address challenges in network virtualization across different clouds, various third-party
commercial solutions have emerged. VMware NSX is a network virtualization technology that
runs at the hypervisor level, recreates the whole network in software at both layers 2 and 3, and
also supports Xen and KVM. It uses a virtual switch in the hypervisor to connect to other virtual
switches, virtual bridges or virtual routers, while only requiring an IP backplane for connectivity.
It also supports virtual networking across different data centers since the virtual networking
components connect over IP. However, this solution is difficult to support across multiple
providers, as it requires privileged access to the hypervisor.

Both VNS3 and RightScale's Cloud Management products lets users provision virtual machines
in the same virtual private network across different public cloud providers through a common
interface. VNS3 runs a virtual appliance manager at each cloud provider and implements a
virtual switch/router, and a VPN gateway in the appliance; hence, VNS3 is not dependent on the
underlying cloud provider's virtual networking technology because it re-implements its own in
the cloud on top of the IP backplane. RightScale provides a unified wrapper around the virtual
networking API of various cloud providers and greatly simplifying the deployment of virtual
networks spanning multiple public clouds. However, these third-party solutions require
additional resources to configure and manage these networks, again placing a significant



burden of configuration and management on end users. While this burden may be acceptable in
environments where dedicated staff is employed to manage the virtual network components, it
becomes a significant barrier for small/medium-scale deployments - a typical use case of
clouds. IPOP targets the needs of users who are not willing to afford the configuration and
management of additional virtual network infrastructure.

Academic and industry research have also explored applicable solutions for cross-cloud virtual
networking. Researchers at IBM have developed VirtualWire, which implements a layer 2 virtual
network tailored to deployment of legacy applications and VM migration across clouds.
Virtualwire is a hypervisor-level virtual network integrated with the Xen-Blanket nested
virtualization technology, enabling VM migration across public clouds. VIOLIN uses a very
similar approach to Virtualwire providing layer 2 communication with networking components
such as switches and routers implemented purely in software. A drawback with these
approaches is that users are still required to configure virtual switches, routers, and deploy their
own DHCP and DNS servers within the virtual network.

Another solution is CloudNet which advocates MPLS-based VPNs to bridge virtual networks
and provide layer 2 connectivity across different cloud providers. However, this approach
requires public cloud vendors to expose compatible MPLS-based VPN gateways and layer 2
access to their networking virtualization technologies. Major public cloud providers do not
support layer 2 connectivity.

VNET also provides layer 2 connectivity across private clouds and it is implemented at the
hypervisor level. This is accomplished through a layer 2 proxy that bridges the two networks
but this approach would not work on public clouds since access to the hypervisor and layer-2
networking is unavailable to users.

All of these previous works do not explicitly deal with NATs and firewalls, and assume the
availability of VPN gateways and virtual routers with public IP addresses. As cloud usage
increases, the pool of IPv4 addresses become more scarce --- compounded by recursive
virtualization and the use of containers --- establishing end-to-end virtual network links across
NAT-constrained devices becomes increasingly important.

VINE is a layer 3 virtual networking alternative which supports NAT/firewall traversal through
relaying. However, it requires users to manage and configure the virtual routers if an application
server is migrated across clouds, and does not provide NAT-traversed end-to-end tunnels that
bypass a relay/router node.

OpenVPN is a solution that is applicable in both cross-cloud VPN environments and mobile
virtual networking. However, OpenVPN follows a client/server architecture where all IP traffic

is routed through a central gateway. This incurs high latency and creates a resource bottleneck.

Many other solutions improve on the OpenVPN model; for instance, Hamachi uses a proprietary



central server to setup P2P connections between hosts, even through NATs and firewalls. IP
traffic is tunneled over these encrypted P2P connections.

Other approach such as Tinc, Vtun, and N2N all create mesh VPNs where nodes create direct
connections to each other, but they require nodes to be openly accessible over the Internet.
While these solutions can potentially be used to enable cross-cloud virtual networking, they are
not currently supported by mobile platforms, and do not provide a flexible overlay architecture
that supports other VPN topologies, such as those implied by friend-to-friend social network
graphs.

3. Architecture and Features

3.1 Overall Architecture
From a developer’s perspective, IPOP consists of three major modules depicted in Figure 3.1:
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Figure 3.1: Major IPOP modules: IPOP-Tap, IPOP-TinCan, and Controller

IPOP-Tap: this is the module that interfaces with a virtual network interface (VNIC) to be able to
pick/inject IP packets from/to the virtual network. It is responsible for maintaining send/receive
queues, and using the system call interface of the O/S (e.g. Unix ioctl()) to configure and
read/write from a virtual network interface (tap device). It also handles the encapsulation of an
IP packet by adding the required IPOP headers for routing over the P2P links.

IPOP-TinCan: this is the module that handles links between pairs of IPOP nodes. Specifically, it



manages each “TinCan” link that a node has. A “TinCan” link is a private end-to-end connection
between two peers through which the virtual network’s IP traffic is tunneled. IPOP-TInCan
handles the setup/tear-down of each link (link setup thread), and the sending/receiving of
tunneled IP packets over these links (packet handling thread). The link setup thread uses
external services through the XMPP protocol to discover and notify peers for which TinCan links
are to be formed, and STUN/TURN protocols to establish links between nodes that are
constrained by NATs (Network Address Translators). It also exposes a management API to the
controller module. The packet handling thread uses the IPOP-tap module to interact with the
virtual network, and the Berkeley sockets API to send/receive tunneled packets through the
physical Internet.

Controller: this module is responsible for configuring and controlling the setup and
management of a collection of IPOP-TinCan links to form overlays, using the API exposed by
the IPOP-TinCan module. The controller is responsible for establishing the policies for topology
creation of an IPOP overlay (e.g. on-demand topology in GroupVPN, or social graph topology
and multi-hop routing in SocialVPN), and determining when links are created/destroyed (e.g.
when a peer node’s presence is detected, or on-demand triggered by IP traffic), using the
IPOP-TinCan mechanisms exposed by its API to implement the policies.

3.2 Features

1) Supporting unmodified TCP/IP applications through P2P tunneling

It helps to understand the architecture and the functionality of the major modules of IPOP by
looking at the system from different perspectives. Starting from the perspective of applications
(Figure 3.2), the most important benefit of network virtualization in IPOP is that it supports
existing, unmodified applications. From the application’s perspective, IPOP creates a virtual
private network supporting existing socket APls exposed by the O/S through a virtual network
interface (VNIC) and end-to-end tunneling, such that existing applications (IPv4 or IPv6 based)
can execute without requiring modifications, and new applications can be deployed using
well-known Berkeley socket APls. For performance reasons, IP tunneling in IPOP typically takes
place across a single TinCan link, but multi-hop routing over several TinCan links is also
supported in the architecture
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Figure 3.2: IPOP exposes a virtual network to applications, thereby supporting the standard Internet IP
protocol and existing, unmodified applications

2) Leveraging Social Relationships in IPOP

In order for IPOP to provide the virtual network’s perspective illustrated above, it is necessary
for users to establish who they want to link with in their virtual network, and to configure and
deploy IPOP software on their devices. Figure 3.3 illustrates the process for users to establish
relationships, and how IPOP utilizes XMPP messages to establish TinCan links.
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Figure 3.3: User establish relationships to create point-to-point links to other users, or establish



groups, through an online social network (OSN) supporting the XMPP protocol.

In order to configure IPOP virtual networks, the user needs to determine which users they wish
to connect to. This is done through an online social network interface - independently from using
IPOP. In the typical case, a user creates/authenticates to an account in an online social network
(OSN) server; this could be a public service (e.g. Google hangout), or a private service (e.g. a
private ejabberd server), through a Web interface or XMPP client (e.g. Pidgin). The user
establishes relationships with other users they wish to connect to through the OSN (e.g. with
friend requests). These can be peer-to-peer (e.g. in IPOP’s SocialVPN), or based on groups
(e.g. in IPOP’s GroupVPN). Currently, IPOP supports the XMPP protocol to query OSN
relationships, and to send messages to online peers.

3) Easy Deployment with Minimum Configuration

The IPOP software typically runs on a user’s personal computer, or on virtual machines
deployed on cloud resources. Once peer relationships are established through an OSN server,
a local configuration file at each IPOP endpoint points to the OSN server, and the user (or
system administrator) simply executes the IPOP software on the resources that are to be
connected to the virtual network (Figure 3.4). IPOP then automatically installs and configures
the local VNIC, and automatically creates end-to-end tunnels connecting to VNICs of peers
determined by the OSN.
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Figure 3.4: A user or system administrator provides a configuration file determining, among other
parameters, which OSN server to connect to; upon running IPOP, TinCan links are autonomously created to
tunnel IP traffic with end-to-end privacy and integrity.



4) Leveraging Existing STUN/TURN protocols

One of the key aspects of IPOP that enables it to transparently tunnel traffic between endpoint
devices is its ability to traverse NATs. This is of key importance as IPv4 address space
exhaustion, and desire for private address spaces as a line-of-defense against attacks have
contributed to the proliferation of NAT devices in personal and enterprise networks. NATs
complicate the process of creating end-to-end VPN tunnels, as resources behind distinct NATs
are not directly addressable by each other.

IPOP leverages the libjingle library to perform NAT traversal in two major ways (Figure 3.5):
IPOP leverages STUN/TURN protocols to discover their NAT endpoints and create tunnels
directly with peers, if possible (“cone-type” NATS), or through an intermediary relay on the public
Internet when more restrictive NATs prevent direct tunnels (“symmetric” NATs). The selection of
a tunneling approach is managed dynamically by IPOP, and tunnels are completely transparent
to applications.
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Flgure 3.5: IPOP supports the creation of direct TinCan links between endpoints for most deployed “cone”
NATSs. Peers use one (possibly out of many) STUN servers to discover their endpoints on the public
network, and exchange endpoint information using XMPP. For certain restrictive “symmetric” NATs, IPOP
uses TURN and relay servers to route through an intermediary node on the public Internet.
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5) Supporting different overlay topologies

The discussion of the architecture thus far has focused on establishing single links between
peers that wish to communicate. This is the common-case scenario in IPOP, as the goal is to
connect peers that wish to communicate directly to each other, over a fast path. Thus, IPOP
preferentially creates TinCan links that leverage the underlying Internet path between the two
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